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An Object-Oriented Approach to Nested Data Parallelism

Thomas J. Sheffler * Siddhartha Chatterjee *

Abstract

This paper describes an implementation technique for integrating nested data parallelism into an object-oriented
language. Data-parallel programming employs sets of data called “collections” and expresses parallelism as operations
performed over the elements of a collection. When the elements of a collection are also collections, then there is
the possibility for “nested data parallelism.” Few current programming languages support nested data parallelism
however.

In an object-oriented framework, a collection is a single object. Its type defines the parallel operations that
may be applied to it. Our goal is to design and build an object-oriented data-paralle] programming environment
supporting nested data parallelism. Our initial approach is built upon three fundamental additions to C++. We add
new paralle]l base types by implementing them as classes, and add a new parallel collection type calied a “vector” that
is implemented as a template. Only one new language feature is introduced: the foreach construct, which is the
basis for exploiting elementwise parallelism over collections.

The strength of the method lies in the compilation strategy, which translates nested data-parallel C+++ into ordinary
C++. Extracting the potential parallelism in nested foreach constructs is called “flattening” nested parallelism. We
show how to flatten foreach constructs using a simple program transformation. Our prototype system produces
vector code which has been successfully run on workstations, a CM-2 and a CM-5.

1 Introduction

The data-parallel programming model has proven to be popular because of its power and simplicity. Data-parallel
languages are founded on the concept of collections and allow programmers to express parallelism through operations
over the elements of a collection. Quite often the elements of a collection are simple types such as numbers. However,
it is natural to think of collections containing other collections, and to write parallel algorithms in terms of nested
collections. This style of programming leads to “nested data parallelism.”

We distinguish between two forms of data parallelism: elementwise parallelism and aggregate parallelism.
Elementwise parallelism allows a function f on a single element to be applied in parallel over the multiple elements
of a collection. An example is adding 2 to every component of a vector. Aggregate parallelism applies a function g to
the entire collection, presumably using a parallel implementation. Finding the mean of the components of a vector is
an example. Moving to the object-oriented domain, a homogeneous collection C(T") whose elements have type 7' has
a natural representation using two classes: a class ¢ for the elements, and a class ¢ for the coliection itself. We expect
classes ¢ and ¢ to be “orthogonal™: the operations on class vector are hopefully independent of whether the vector
contains integers or floating-point numbers. The functions f used in elementwise parallelism are naturally defined as
methods on class ¢, while the functions g used in aggregate parallelism are naturally defined as methods on class c. (In
type-theoretic terms, this implies that the functions g are polymorphic over possible element types.) Finally, we need
a mechanism to express the parallel application of f to each element of a collection.

Our key contribution is an object-oriented representation of elements and collections that allows not only the
expression of elementwise and aggregate parallelism, but also the expression of nested data parallelism for nested
collections. Our initial approach is built upon three fundamental additions to C++.
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1. We added new parallel base types Int, Float, Bool, and Char by implementing them as classes. These
correspond to the base classes of element types £.

2. We chose the vector as an initial parallel collection type ¢, and implemented it through the use of templates,
reinforcing the orthogonality of ¢ and t.

3. We added one new language construct, the foreach construct, for supporting elementwise parallelism in
collections.

The strength of our method lies in the compilation strategy, which translates collection-oriented code into regular
C++. Most of the programming system is C++ code that carefully orchestrates the interaction between the base and
collection classes. The foreach construct is the only new language feature and it is necessary to provide the fundamental
source of parallelism for data-parallel programming. Exposing the parallelism expressed in a foreach construct
is called “flattening nested parallelism.” The task of translating the foreach construct is the most complicated
responsibility of the compiler, and we propose a localized code transformation that flattens the nested parallelism in
the foreach construct. This new method differentiates our system from others supporting nested parallelism [6, 14].

No other project currently addresses the integration of nested data parallelism into an object-oriented language.
Support for nested parallelism requires that it be integrated into the language and run-time system. Rather than
designing a new language with data-parallel semantics, we chose to merge nested data parallelism into C++ with a
minimum of new language features. The result is that we are able to demonstrate a prototype programming system
that meets our goal and that runs on a number of machines, including workstations, a CM-5, and a CM-2.

1.1 Benefits

Because our programming language is nearly standard C++ and our compiler translates sources to C++ as an interme-
diate step, our programming system reaps the benefits of the popularity of C++. Our system allows the use of many
programming tools already available for C++. The programming model is familiar: parallel classes and collections
are simply new data types with parallel semantics. The learning curve for C++ users is small because there is only one
new language feature to learn: the foreach construct.

The system is also extremely portable. Our initial version isolates the parallel implementation to the lowest level of
the class hierarchy. By implementing these low-level primitives on a new machine, the entire system may be ported to
anew parallel computer with little effort. (This technique allowed us to quickly port the system to a number of parallel
computers in this initial experiment.) This paper describes the initial implementation scheme based on a portable
vector library called CVL [3]. However, we believe that higher performance may be obtained in the future by more
sophisticated compiler techniques.

1.2 The importance of nested parallelism

Most data-parallel languages, such as the array sublanguage of Fortran 90 [1], limit the type of the elements of a
collection to base types such as integers. Nested parallelism is the ability to build a collection whose elements are
themselves collections, and to apply parallel operations defined on the elements of a collection in an element-wise
fashion. For example, it should be possible to create a “vector of vectors” or an “array of vectors.” If it is possible
to sum a single vector with a paralle!l reduction function, then it should be possible to apply that same reduction in
parallel to a collection of vectors.

Nested parallelism occurs naturally in the decomposition of many scientific problems. For example, a natural
implementation of matrix-vector multiplication has the following structure.

foreach row R in matrix M in parallel {
rowsum = sum(R);

}

The function sum is a parallel algorithm to compute a reduction in parallel. In the absence of a language that supports
nested parallelism, the algorithm cannot be expressed in such a natural manner.



Nested parallelism is important for modular programming and the construction of reusable code libraries. Without
it, users must develop new algorithms for each context in which a function occurs. In the previous example, the
function sum is used in a paraliel context. Without support for nested parallelism, a programmer designing a library
might have to write two versions of sum: one to be used in a parallel context, and one that is not. Since a library
designer cannot foresee the context in which a function can be called, it is impossible to write a truly general parallel
function such as sum if nested parallelism is not integral to the programming system.

1.3 Comparison to other work

Many other projects are building parallel programming systems that support nested parallelism, object-oriented
programming, or collection-oriented programming. This section touches on some of the efforts that are most directly
related to ours. None have focused on object-oriented data-parallel programming that supports nested parallelism.

NESL NESL [5] is adata-parallel language designed to fully support nested data parallelism. It provides one collection
type: the sequence. NESL is a strongly typed, polymorphic language with a type inference system. This makes it
possible to write generic functions that work on any type of sequence, for example.

Our project is a direct outgrowth of NESL, and we owe many of our ideas to it [9, 17]. However, we believe that
our programming system offers many practical features over NESL. First, NESL is purely functional. Because of this,
NESL suffers the usual problems when updating subsets of aggregate variables, and it makes it impossible for users to
manage memory use. An imperative language circumvents these problems — or at least places their solution under
control of the programmer. NESL’s runtime system is incompatible with other languages. In contrast, we translate our
code into C++, and many compilers support mixing C, C++ and Fortran modules. We also provide a means to share
data between such modules. It is currently not possible to link the NESL runtime system with other compiled modules.

pC++ The pC++ [7] language defines a new programming model called the “distributed collection model.” This
model is not quite data-parallel and it does not support nested parallelism. Its collections provide “object parallelism™:
amember function of a collection describes a parallel algorithm over the elements of the collection. Elementwise paral-
lelism in collections is specified through special member functions of the collection that have a MemberOfElement
designation. In our terminology, the classes ¢ and ¢ are merged into one, but the methods f are identified with
the MemberOfElement designation. pC++ currently runs on workstations, the CM-5, the Paragon, the Sequent
Symmetry, the BBN TC2000, and the KSR-1.

pC++ provides classes for managing thread parallelism over the distributed nodes of a SPMD parallel program, and
provides means for specifying the distributionof objects over the processors of a parallel computer. The implementation
of object-parallel functions on collections is quite complicated. It exposes three levels of parallelism to the writer of
such a function: collection parallelism, thread parallelism, and element parallelism. The intent is that libraries will
provide collection types, and most users will not have to deal with the intricacies of collection definition. However,
since collections may not be members of other collections, the data types available to a programmer are somewhat
limited. We believe that pC++ may be a suitable back-end for the definition of the low-level distributed data structures
that our run-time system requires.

C#*## C**[12] is an object-oriented language based on anew computation model called “large grain data-parallelism.”
It makes good use of the data abstraction features of C++, but currently limits its collection types to arrays. Elementwise
parallelism is provided for with special parallel functions. We believe that using functions to delimit element-wise
code regions leads to an explosion in the number of functions it takes to write an algorithm, thus impeding its clarity.
Our foreach may be placed at any point in a function, and can itself be nested. C** syntax allows for nested
parallelism, but the runtime system does not currently support it.

Concurrent Aggregates Concurrent Aggregates [10] is aprogramming model that attempts to manage the complexity
of concurrent access to a distributed data structure from multiple competing tasks. The elements of its collections are
autonomous agents that each have their own thread of execution. Concurrent Aggregates allows collections to be acted



on as a single entity, as does our model, but allows collections to have elements of heterogenous types and supports
control parallelism. This model is more general than ours, but may be more complicated to use and compile.

CC++ Compositional C++ (CC++) [8] supports data-parallel programming, cooperative processing and task paral-
lelism. Its focus is synchronization and communication between processes. While it is object-oriented, it would be
difficult to build data-parallel collections with it. There is no support for nested parallelism.

Paralation Lisp Paralation Lisp [16] supports collections in what are called “paralations™ (parallel relations). A
paralation has a shape (“vector” or “array,” for example) and a number of data elements called “fields.” Paralation
Lisp adds parallel collections to Common Lisp along with an elwise clause that is nearly identical in function to the
foreach construct we propose.

Because Paralation Lisp is built on Common Lisp, it is dynamically typed, making it difficult to compile effectively.
Although Paralation Lisp defines the semantics of nested parallelism, only a limited implementation of the language
was ever completed.

Proteus Proteus [13] is an architecture-independent language for prototyping parallel and distributed programs. Its
primary data structures are sets and sequences, and it allows both parallel composition of processes and data-parallel
computations. The data-parallel subset of Proteus is similar to NESL and it supports nested data parallelism. Proteus is
an expressive language, but is difficult to compile. Currently, Proteus runs on a parallel shared-memory machine, and
to a limited extent, on a MasPar MP-1.

1.4 Organization of this paper

The rest of this paper is organized as follows. Section 2 describes an object-oriented data-parallel language based on
C++ that supports nested data parallelism. Numerous examples are used to show the power of the language and the
notational simplicity of algorithms. Section 3 discusses the basis of nested data parallelism and the data structures we
develop to support it. It then goes on to explain the translation procedure that flattens nested data parallelism. Section 4
describes a small application and presents performance results collected from a number of machines. The purpose of
this section is merely to prove the existence of the implementation. The performance figures reported reflect a very
immature implementation. The last section summarizes the points made in this paper and presents some directions for
future research.

2 Language features and overview

This section gives a brief overview of the classes and templates that contribute to the language and programming
system. As stated earlier, our desire was to experiment with the constructs and their implementation at an early stage.
For this reason, the current language is limited to just a few base types and one collection type. In this discussion, we
assume a basic familiarity with the syntax of C and C++. Note that the code presented appears somewhat unremarkable
in that so little has been added to C-++ to implement nested paralielism.

Four new classes define the primitive base types Int, Float, Bool and Char, and a large set of standard
operations on these types. (Note that types Int and Float are different from the normal int and float of C.)
The template v<T> defines a vector class given a type T, where T can be a primitive base type, a type derived from a
primitive base type, or another collection type. The functions defined for vector types include permutation, truncation,
concatenation, etc. In addition, the two special vector types, v<Int> and v<Float>, have parallel prefix and
reduction operations defined.

Because one collection type may be the base of another, the definition of nested parallel types is simple. A
vector-of-vectors is defined by nesting template invocations. ( C++ parsing peculiarities require a space between the
closing brackets of nested templates.) Vectors may be defined (space allocated) with an initial size, simply declared,
or initialized from strings. Standard C++ stream I/O is defined for vectors so that vectors may be read and written just
like any other type.



Int X = 3; // given an initial value

v<Float> vx(size(5)); // defined, all values are 0
v<Int> vYy; ’ // declared
v<Int> vz = "[1 2 3 4 5]"; // initialized

// vector-of-vector-of-Int
"[[1 2] [3 4 5] [67 8]1";

v<v<Int> > vv

vy << cin; // read from standard input

The foreach construct is the basis for parallelism. In its body, the variables of the foreach argument list
represent an individual element of the collection, and the statements are executed on the corresponding elements of
each of the vectors. Vectors of the foreach argument list with a defined length must be of the same length, or the
runtime system signals an error.

v<Int> ind = index(5); //7 [0 1 2 3 4]
v<Int> vl;
v<v<Int> > v2;

foreach (ind, v1, v2) {
vl = ind * 2;
v2 = index(ind);
}
// vl ==> [0 2 4 6 8]
// v2 ==> [ [] [0] [0 1] [0 1 21 [0 1 2 3] ]

In this example, the function index creates an index vector whose values begin at zero. The vectors v1 and v2
demonstrate two types of parallelism over the vector ind. v1 is result of simple elementwise parallelism using
arithmetic operations. v 2 is the result of a nested parallel call to the index function, which creates the nested vectors
of various size.

2.1 Sparse data structures

Nested vectors are useful for defining sparse data structures. A sparse matrix is represented as a collection of rows,
where each row is a collection of (column, value) pairs. For example, the sparse matrix

1.0 2.0
3.0 40 50
6.0 7.0

may be stored in two vectors as the following.

v<v<Int> > col "{[0 11 [0 1 2] [1 211";
v<v<Float> > val = "[[1.0 2.0] [3.0 4.0 5.0] [6.0 7.011";

Each sub-vector (called a segment) of the two vectors stores the information pertaining to one row. A new class
can be defined to encapsulate the two vectors that define a sparse matrix. Using this representation, it is easy to write
an algorithm that multiplies a sparse matrix by a dense vector. The following algorithm demonstrates several levels of
nested parallelism. Temporary variables are used to help explain its operation.

class Sparsemat {
v<v<Int> > col;
v<v<Float> > val;



v<Float> mvmult(Sparsemat m, v<Float> X)

{
v<Float> vy;
v<v<Int> > col = m.col; // extract members
v<v<Float> > val = m.val;
foreach (col, val, y) { // for each row
v<Float> product; // temporary vector for each row
foreach (col, val, product) { // for each element
Float get = x[coll;
product = get * val;
1
y = sum(product); // nested parallelism
}
return y;
}

The algorithm works as follows. The outer foreach construct operates over the rows of the matrix, and the inner
foreach over the elements of each row, which is defined by a (column, value) pair. At the innermost level, each
clement retrieves the value from the vector x indexed by its column and stores it in a temporary variable called get.
Next, each element multiplies its value by the value retrieved from the vector and stores it in product. Each row
computes the sum of its product values to produce the y value for that row. Upon exiting the outermost foreach,
y becomes a vector with one result value for each row.

2.2 Classes and user-defined types

New parallel types may be defined as C++ classes whose members are the primitive base types, or other parallel types.
Member functions may also be defined for new types. A point on the plane can be defined as a new parallel type that
has an x and y value. The member function di st computes the distance of a point from the origin.

class Point {
public:
Float X, Vi

Float dist()

{
return sqrt(x*x + y*y);
}
}i
Point pl, p2; // declare two points
cout << pl.dist(); // print the distance of pl from the origin

New parallel types may serve as the base type for new vector types, and the member and friend functions of the base
type may be called inside a foreach clause. The following function computes the average distance of a collection
of points from the origin. (Note: 1ength is a standard member function defined for all vectors.)

Float avgDist(v<Point> points)
{

v<Float> distance;



foreach (points, distance) {
distance = points.dist();
}
return sum(distance) / Float(points.length()};

}

The Point class is a type derived from the primitive base types and may be used as the base type for a collection.
Thus, a vector of points is a type that can be generated by the vector collection template. A more complicated example
illustrates how to fit a line to a vector of points using a least-squares fit. This function takes as arguments a vector of
points, and references to two variables in which to place its results.

void leastSquares(v<Point> points, Float &yintercept, Float &slope)
{
Float num = Float(points.length()); // of the vector
Float xavyg, yavg, Stt;
v<Float> x, y, XX, Xy;

foreach (points, x, y) {
X = points.Xx; // memberwise field extraction
y points.y;

xavg = sum(x) / num;
yavg sum(y) / num;

foreach (x, y, xx, xy) {
Float tmp = x - xavg; // element-wise temporary
Xxx = tmp * tmp;
Xy = tmp * y;

Stt = sum(xx);
slope = sum(xy) / Stt;
yintercept = yavg - xavg * slope;

}

The first foreach construct demonstrates the idiom for extracting members of a vector of structures into separate
vectors. The next two lines compute averages of the x and y values, and the rest of the function is straightforward. The
last two lines store the two results in the reference variables. Of course, since function LeastSquares is defined on
parallel data types, it can be called inside a foreach over a vector of type v<v<Point> >.

2.3 Template functions

Users may write template functions to implement generic operations on any type. For example, the following function
reverses the elements of any vector. Its implementation uses the function permute, which is defined for all vector
types. In fact, all of the predefined operations for vectors in the system (permute, send, get, distribute,
append, etc.) are implemented using template functions.

template <class T>

v<T> reverse(v<T> vector)

{
Int len = vector.length(); // vector length
v<Int> ind index(len); /7 (01 2 ... n-1]



foreach (ind) {
ind = len - ind - 1; // reverse index computation
}

return permute(vector, ind);

24 Summary

This section touched on some of the features of the language. We introduced the primitive base types and the vector
collection template. Note how the various features of C++ are used to express data parallelism. Classes are used in a
fundamental way to encapsulate both collections and elements of collections. Template classes are used to implement
the collection types. Both true polymorphism and the more ad hoc operator overloading are used in building these
classes. Stream I/O is cleanly integrated into the language. Finally, static type checking is used extensively to assist in
compile-time optimizations. This final feature differentiates our effort from Paralation Lisp, which relies on dynamic
type checking.

Two major features of C++ that we have not used so far are inheritance and exception handling. We feel that these
features appear when writing iarge codes, independent of whether the code is sequential or parallel. Thus, we expect
these constructs to show up in large user codes.

3 Flattening nested parallelism

Our approach to flattening the nested parallelism of foreach constructs is based on a simple program translation
method. We add a small prolog and epilog to each foreach body and eliminate the foreach keyword entirely,
leaving standard C-++ code. The foreach body remains textually unchanged, and the final compilation interprets
the statements of the body in the new context of the prolog and epilog. Our approach makes use of the strong typing
of C++ to manage the nesting of parallel constructs. The key idea we develop is a translation scheme that enables
elementwise parallelism to be implemented through an effective change in the type of a collection object. This section
sketches only the basic idea of the translation.

3.1 Parallel contexts

Nested data-parallel programs have different contexts of execution. A region inside a foreach construct defines
a new context that changes the rype of its variables. A variable name that refers to a vector outside the foreach
construct is changed to refer to one of its elements inside the construct. Consider the following very simple code
fragment.

v<Int> vl(size(10)), v2(size(10)), v3(size(1l0));

Int sl, s2, s83;
sl = s2 + s83; // of type ‘Int’
foreach (v1, v2, v3) {

vl = v2 + v3; // refers to type ‘Int’

}

Outside of the foreach, the variables v1, v2 and v 3 refer to vectors of type v<Int>; inside they refer to simple
Int types. In fact, the foreach construct changes the effective type of the variables of its argument list from a
collection type, to the type of one of its elements. The abstraction presented by the foreach clause is that inside its
boundaries, statements are executed on each element of a collection in parallel.

The example shows two instances of the addition operator (+): one outside and one inside the foreach construct.
In effect, both instances of this operator mean to add two variables of type Int. However, it is apparent that inside
the foreach the operator signifies the addition of the elements of two collections (in lock-step synchrony because



this is a data-parallel model), and that outside it signifies the addition of two scalar variables. In fact, by introducing
the attribute of plurality, we can unify the meaning of the two apparently different operations implied by the contexts
in which operatoxr+ occurs.

3.2 Plurality

In our programming system, all types are plural — there is no simple scalar type. The plurality of a variable is an
attribute that describes the number of its components. (In C* [15], for example, there is a differentiation between
mono and poly types. Our programming system makes no such distinction.) What might be considered a “scalar” is
actually a variable with a plurality attribute of one, but this is only a special case.

For this discussion, we will introduce a notation for writing the components of a variable of a given plurality. Each
component is written separated by a vertical bar. The printed values of two variables are shown below. il isan Int
of plurality one, and 12 is an Int of plurality five.

il ==> 5 // one component
i2 ==> 10 | 20 | 30 | 40 | 50 // five components

All variables in our system have the plurality attribute. The plurality of a variable, however, is not a user-accessible
feature of an object: it is an attribute of use only to the implementation. For instance, a variable of class Int may
have plurality of 10. The class Int defines addition for values of the same plurality.

With the attribute of plurality, the meanings of the two instances of operator+ in the example above may be
unified. We say that a foreach construct deconstructs a collection yielding a variable whose plurality is the size of
the collection. In the example, the type of the variables s1, s2 and s3 is Int, and their plurality is one. Inside the
foreach construct, the type of the variables v1, v2 and v3 is also Int, but their plurality is 10. Because the type
Int is defined over values of arbitrary plurality, the same operator applies to both contexts. This is why we needed to
define the class Int; C++’s int type does not provide the arbitrary plurality that we need.

The class Int is defined such that its constructor only creates instances with plurality one. However, by decon-
structing collections, instances of Int may be obtained with greater plurality. Similarly, the constructor for v<Int>
creates a vector collection whose plurality is one, but a deconstructed v<v<Int> > could result in a vector collection
of greater plurality.

3.3 Plurality and collections
The obvious question now arises:
How is a variable of a given plurality different than a collection of the same size?

In short, the pluratity of a variable merely indicates the number of its components, but this set of components is not
necessarily arranged in any particular order. A collection imposes a shape (like “vector” or “array”) on the components
of a variable to form a collection.

Operations defined for plural variables can include only their construction and destruction and those operations
that can be applied to their components in parallel. Examples are parallel addition on the components of variables
of type Int, and parallel permutation on the components of variables of type v<Int>. (Recall that all types have
multiple components.) However, no aggregate-parallel operations are allowed, because their interpretation depends
on the shape of the collection. Such operations must be defined in terms of a collection. A collection imposes a
shape on a plural object, and thus determines the type of operations that make sense for the collection. For example,
a vector collection type may define reduction and parallel-prefix operations, and a 2-D array collection
type may define transpose. The operations of parallel-prefix and transpose do not make sense on the
components of a plural data type: they only have meaning in the context of a defined shape.

These notions suggest a representation of a collection. A collection must include two things:

e aplural variable,

o and a shape descriptor.



The shape descriptor is a data structure that describes how to arrange the components of the plural variable into the
shape of the collection.

3.4 Anexample: vector collections

The simplest type of collection is the vector. A vector collection has one plural variable, and a shape descriptor called
a “segment descriptor” which groups the components of a plural variable into logically contiguous “segments.” The
C++ class representing a vector of type T is the following.

class v<T> {
T val;
segment_desc segd;

// ... member functions follow ...
1

A segment descriptor is a sequence of numbers specifying the division of the components of the underlying plural
variable into segments. The length of the sequence is the plurality of the collection, and the sum of the numbers in the
sequence must match the plurality of the underlying variable.

For example, a vector of type v<T> of plurality one has a segment descriptor of length one whose value matches
the plurality of the underlying variable of type T. Given a vector whose value is [t1 t2 t3 t4 t5 t6],its
members would have the following values.

val ==> tl | t2 | €3 | t4 | £5 | t6
seyd ==> { 6}

A vector whose plurality is greater than one is written as a sequence of vectors separated by vertical bars. The
following vector has type v<T> and plurality three.

[ t1 t2 t3 t4 1 | [ t5t6 1 | [ t7 t8 t9 }
Its members would have the following values.

val ==> t1 | t2 | t3 | t4 | t5 | t6 | t7 | t8 | t9

segd ==> {4231}
The length of the segment descriptor is 3 and gives the plurality of the collection. Its values ({ 4 2 3 }) describe
the lengths of each of the components of the (plural) vector.

Of course, vectors may be nested. Let type T itself be a collection type, then the the val member of type v<T>
will be a collection with another segment descriptor. Consider a vector of type v<v<T> > of plurality two.

[[t1]1] [t2 t3 t4]] | [[£5 t6 t7] [t8 tQ]]
Its members have the following values.

val ==> [t1] | [t2 t3 t4] | [t5 t6 t7] | [t8 t9]
segd ==> { 2 2}

The val member of the collection has plurality four, and the segment descriptor of the collection arranges these four
components into two segments. Because each element of the collection is also a collection, the val member has its
own internal structure.

val.val ==> t1 | t2 | t3 | t4 | t5 ] t6 } t7 | t8 | t9
val.segd ==> { 1 3 3 2 1}
segd ==> { 2 21}

Member val . val has type T and plurality nine, and the first level segment descriptor divides these nine components
among four segments to produce a vector of type v<T> and plurality four. The second level descriptor divides these
four components into two segments to produce a vector of type v<v<T> > and plurality two. In general, a nested
vector has as many segment descriptors as there are levels of nesting.
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3.5 The translation scheme

A foreach construct strips away the shape descriptor of a collection, causing a variable to refer to the underlying
plural variable, instead of the collection. Through a simple translation scheme, we are able translate a foreach
construct so that inside the construct the variable names refer to the plural variable of the collection without the context
of a defined shape. The advantage of this approach is that the translation is very simple, and the type system of C++
is used to resolve the references to operators and functions inside the foreach. The resulting code is fype safe.

The translation of a foreach construct involves merely changing the variables of its argument list to refer to the
val field of the collection instead of the entire collection. Reference types are used to implement the change in type,
and the C++ type system takes care of the rest. The following code

v<Int> a(size(l10)), b(size(1l0)), c(size(10));
foreach (a, b, c¢) {
a=>b + ¢; // foreach body

becomes

v<Int> a(size(1l0)), b(size(l0)), c(size(10));
Int &ar = a.val, &br = b.val, &cr = c.val;

Int & = ar, &b = br, &c = cr;
{

a=>b + ¢; // foreach body
}

}

after translation. A reference is like a synonym for a variable in C-++. Initially, variable a refers to a vector. Variable
ar is a reference to the val field of a, and has type Int and plurality ten. The next block creates a reference to ar
named a. Now, when the foreach body is compiled the name a refers to a variable of type Int. Note that the
foreach body is not changed in any way.

By using references, the translation arranges for each variable of the foreach list to refer to its val member.
The reference then actually modifies the val member of the collection. (Note: uninitialized collections are given a
shape descriptor in the epilog created in the translation. In the example above, all collections were defined so no epilog
was generated.)

Note the various features of C++used here: scoping, variable references, static type checking, and function/operator
name resolution. This translation uses these features to change the effective types of the variables inside the foreach
construct. Its body remains textually unchanged. While this transformation may seem to increase the code by a large
factor, the new statements merely initialize references (pointers) and are trivial. Even a simple compiler should be able
to optimize the few redundant initializations performed.

3.6 Conditionals and loops

Our present compilation strategy for conditionals is similar to that used by vectorizing compilers [18] and also by
NESL [5]. We give only a brief overview of the technique here.

Note that the plurality of all variables inside a given foreach construct must be the same. Thus, we speak of
a foreach construct having plurality p. When an if statement is encountered inside a foreach, the conditional
expression is evaluated and stored in a special variable called the mask. The mask is a boolean variable of plurality p
that has p, true components, and p; false components.

At this point, the run time system splits each live variable in the foreach body, v, into two parts. One part,
s, contains the components corresponding to the true components of the mask and has plurality p:. The other part,
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Table 1: Times measured for the small version of the NAS Conjugate Gradient benchmark on various machines.

| CG Benchmark |
Sun 4/370 143
8K CM-2 408

32 Proc. CM-5 21s

vy contains the components corresponding to the false components of the mask and has plurality py. The translator
arranges for the then clause of the conditional to be executed by replacing each variable v with v;, and the else
clause by replacing each variable v with v;. Result vectors of the two branches (of plurality p; and py ) are then merged
using the mask to produce final values of plurality p.

The drawback of this approach is that a conditional may result in a significant amount of communication. We are
currently examining other translation techniques that may be more efficient. Loops are handled in a similar fashion,
except that the live variables are successively split at each trip through the loop.

3.7 Summary

This section sketched the procedure for using program translation to flatten nested parallelism. While we omitted
many details (the runtime system, the parallel extension of variables across foreach constructs, etc.), the procedure
described captures the essence of the compilation system.

Other descriptions of nested parallelism have described requiring two functions [4, 14]. In the terms presented
here, these systems allowed the user to write a function in terms of a variable of plurality one, and the compiler
extended it to operate on values of greater plurality. We believe that our method simplifies the notion of fiattening
nested parallelism. Because all functions are written in terms of plural variables, only one version of any particular
function is required.

4 Experiments

For an initial experiment, we wanted to demonstrate the feasibility of our approach by implementing a small subset of
the language and runtime system. We also desired to show that the system could be fairly portable. Our goal was to
demonstrate code with nested parallel constructs that ran on a variety of machines. For this simple test, we selected the
small version of the NAS Conjugate Gradient (CG) benchmark {2]. Our translator is currently somewhat incomplete,
so we manually transiated the foreach constructs using the method described earlier.

To date, we have ported the base classes to two different runtime systems. The first is a straightforward imple-
mentation for serial computers. The second runtime target is the CVL vector library [3] which runs on workstations,
Cray Y-MP and C90 computers, the CM-2, and the CM-5. Another port of CVL from UNC also runs on the MasPar
MP-1 [11]. By using this library we hoped to run our code on each of these machines.

However, we ran into some problems because of the current state of C++ compilers on some of these systems. The
CRAY C++ compiler is ATT cfront based and does not handle templates correctly. Some of the other machines did
not have C++ compilers installed. For example, the CM-2 we used did not have a C++ compiler, but we managed to
produce object files on another Sun Sparcstation and to link these with the necessary runtime libraries on the CM-2
front end. We tried a similar technique on the MasPar MP-1, because it did not have a C++ compiler installed either,
but discovered an inconsistency in object file formats. We expect these problems to be worked out in the future as C++
becomes more widely used and demand for support of the language increases. ’

In the end, we successfully ran the benchmark on a Sun-4/370 workstation, a CM-2 and a CM-5. The CG
benchmark is a good test of nested parallel constructs. It uses the sparse matrix-vector multiplication function shown
earlier, and also requires the computation of a dot-product. Table 1 presents the execution times measured on each of
these machines.
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The times reported are actually quite poor. In performing these tests we discovered a large number of inefficiencies
that we plan to correct shortly. (For instance, default constructors for segment descriptors were called in many places
we did not intend.) However, we were encouraged by the fact that we managed to demonstrate a functioning system
in a short time with a minimum of effort. In the next few months we expect to improve these execution times by an
order of magnitude, and to complete implementations on the other machines as C++ support improves.

5 Conclusions

We have explained the implementation of a programming language and runtime system that supports nested data-
parallelism in an object-oriented framework. Our system makes use of many of the features already in C++ and only
adds one new language feature: the foreach construct. Our compilation process translates nested parallel code into
regular C++ which can then be processed by regular compilers. The advantages of this approach are that users retain
the features of C++ (including data hiding, security and inheritance), and gain access to parallel types that can be
composed to create nested parallel types.

Our goal was to produce an extensible prototype system in which to experiment with these ideas. There are many
directions of research that we intend to pursue. Other collection types must be defined: we will probably implement
an array template next. We also intend to investigate the issue of distribution, and will develop constructors that
specify not only the size of an object, but also its distribution over the available processors. We also intend to provide
higher-level communication operators, such as the match and move operators [17].

Our current implementation is based on the C Vector Library (CVL). Using this library allowed us to quickly port
the system to a variety of machines, but limits the possibilities for optimization. Each operator in our language results
in a separate call to a vector function, and the amount of synchronization performed is high. A native implementation
of the base classes for each target machine would allow the opportunity to apply sophisticated optimizations like loop
fusion or loop unrolling on a per-node basis [9]. As we understand the language and compilation system better, we
should be able to deliver much higher performance than that achieved in this prototype system.
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